Compiler Design

Bottom-up Parser (II)

Hwansoo Han
LR(k) Items

- A state of parser == a set of LR(k) items
- An LR(k) item is a pair \([P, \delta]\), where
 - \(P\) is a production \(A \rightarrow \beta\) with a \(\cdot\) at some position in the rhs
 - \(\delta\) is a lookahead string of length \(\leq k\) (words/tokens or EOF)
LR(k) Items

- **LR(1) items**
 - The • in an item indicates the position of the top of the stack

 - \([A \rightarrow \cdot \beta \gamma, a]\) means that the input seen so far is consistent with the use of \(A \rightarrow \beta \gamma\) immediately after the symbol on top of the stack. (*possibility*)

 - \([A \rightarrow \beta \cdot \gamma, a]\) means that the input seen so far is consistent with the use of \(A \rightarrow \beta \gamma\) at this point, *and* that the parser has already recognized \(\beta\). (*partially complete*)

 - \([A \rightarrow \beta \gamma \cdot, a]\) means that the parser has seen \(\beta \gamma\), *and* that a lookahead symbol of \(a\) is consistent with reducing to \(A\). (*complete*)
Computing goto()

- **goto(s,x)** computes the state that the parser would reach if it recognized an *x* while in state *s*
 - **goto**({ [A→β<Xδ,a] }, X) produces [A→βX•δ,a] (easy part)
 - Should also includes closure([A→βX•δ,a]) (fill out the state)

- The algorithm

```
/* goto( s, X ) */
moved ← Ø
for each item [A→β•Xδ,a] ∈ s
    moved ← moved ∪ [A→βX•δ,a]
return closure(moved)
```

- Not a fixed-point method!
- Straightforward computation
- Uses closure()

goto() moves forward
Computing closure()

- **Closure(s)** adds all the items implied by items already in s
 - Any item \([A \rightarrow \beta \cdot B \delta, a]\) implies \([B \rightarrow \cdot \tau, x]\) for each production with \(B\) on the lhs, and each \(x \in \text{FIRST}(\delta a)\)
 - Since \(\beta B \delta\) is valid, any way to derive \(\beta B \delta\) is valid, too

- **The algorithm**

```plaintext
closure( s )
while ( s is still changing )
  for each item \([A \rightarrow \beta \cdot C \delta, a]\) \in s
    for each production \(C \rightarrow \tau \in P\)
      for each \(b \in \text{FIRST}(\delta a)\) // \(\delta\) might be \(\varepsilon\)
        \(s \leftarrow s \cup [C \rightarrow \cdot \tau, b]\)
```

- Classic fixed-point method
- Halts because \(s \subseteq \text{ITEMS}\)
- Worklist version is faster

Closure “fills out” a state
High-level overview \((\text{Algorithm})\)

1. **Build the canonical collection of sets of LR(1) Items, \(I\)**
 a. Begin in an appropriate state, \(cc_0\)
 - \([S \rightarrow \cdot S, EOF]\), along with any equivalent items
 - Derive equivalent items as \(\text{closure}(cc_0)\)
 b. Repeatedly compute, for each \(cc_k\) and each \(X\), \(\text{goto}(cc_k, X)\)
 - If the set is not already in the collection, add it
 - Record all the transitions created by \(\text{goto}()\)
 This eventually reaches a fixed point

2. **Fill in the table from the collection of sets of LR(1) items**

 The canonical collection completely encodes the transition diagram for the handle-finding DFA
Canonical Collection

❖ Building CC: all possible states
- Start from \(cc_0 = \text{closure}([S \rightarrow S, \text{EOF}]) \)
- Repeatedly construct new states, until all are found

❖ The algorithm

\[
cc_0 \leftarrow \text{closure}([S \rightarrow S, \text{EOF}])
\]
\[
CC \leftarrow \{ cc_0 \}
\]
\[
k \leftarrow 1
\]

\textbf{while (CC is still changing)}

\textbf{for each } \(cc_j \in CC \) \textbf{ and for each } \(x \in (T \cup NT) \)

\[
cc_k \leftarrow \text{goto}(cc_j, x)
\]

record \(cc_j \rightarrow cc_k \) on \(x \)

\textbf{if } \(cc_k \notin CC \) \textbf{ then}

\[
CC \leftarrow CC \cup cc_k \quad // \text{new state in DFA}
\]
\[
k \leftarrow k + 1
\]

❖ Fixed-point computation
❖ Loop adds to \(CC \)
❖ \(CC \subseteq 2^{\text{ITEMS}} \), so \(CC \) is finite

\textit{Worklist version is faster}
Example

Simplified, right recursive expression grammar

\[
\begin{align*}
\text{Goal} & \rightarrow \text{Expr} \\
\text{Expr} & \rightarrow \text{Term} \; - \; \text{Expr} \\
\text{Expr} & \rightarrow \text{Term} \\
\text{Term} & \rightarrow \text{Factor} \; * \; \text{Term} \\
\text{Term} & \rightarrow \text{Factor} \\
\text{Factor} & \rightarrow \text{ident} \\
\end{align*}
\]

\[
\begin{array}{|c|c|}
\hline
\text{Symbol} & \text{FIRST} \\
\hline
\text{Goal} & \{ \text{ident} \} \\
\text{Expr} & \{ \text{ident} \} \\
\text{Term} & \{ \text{ident} \} \\
\text{Factor} & \{ \text{ident} \} \\
\; - & \{ - \} \\
\; * & \{ * \} \\
\text{ident} & \{ \text{ident} \} \\
\hline
\end{array}
\]
Example (building the collection)

Initialization Step

\[cc_0 \leftarrow \text{closure}(\{ [\text{Goal} \rightarrow \cdot \text{Expr}, \text{EOF}] \}) \]

\{ [\text{Goal} \rightarrow \cdot \text{Expr}, \text{EOF}],
 [\text{Expr} \rightarrow \cdot \text{Term} \cdot \text{Expr}, \text{EOF}],
 [\text{Expr} \rightarrow \cdot \text{Term}, \text{EOF}],
 [\text{Term} \rightarrow \cdot \text{Factor} \cdot \text{Term}, \cdot],
 [\text{Term} \rightarrow \cdot \text{Factor}, \cdot],
 [\text{Factor} \rightarrow \cdot \text{ident}, \cdot, \cdot],
 [\text{Factor} \rightarrow \cdot \text{ident}, \cdot, *] \}

Add \(cc_0 \) to a set of states, \(CC \leftarrow \{ cc_0 \} \)
Example (building the collection)

Iteration 1

\[cc_1 \leftarrow \text{goto}(cc_0, \text{Expr}) \]
\[cc_2 \leftarrow \text{goto}(cc_0, \text{Term}) \]
\[cc_3 \leftarrow \text{goto}(cc_0, \text{Factor}) \]
\[cc_4 \leftarrow \text{goto}(cc_0, \text{ident}) \]

Iteration 2

\[cc_5 \leftarrow \text{goto}(cc_2, \text{-}) \]
\[cc_6 \leftarrow \text{goto}(cc_3, \text{*}) \]

Iteration 3

\[cc_7 \leftarrow \text{goto}(cc_5, \text{Expr}), \quad \# \text{ Term, Factor, ident} \Rightarrow \text{existing states} \]
\[cc_8 \leftarrow \text{goto}(cc_6, \text{Term}) \quad \# \text{ Factor, ident} \Rightarrow \text{existing states} \]
Example

(Summary)

CC_0 : \{ [Goal \rightarrow \cdot Expr, EOF], [Expr \rightarrow \cdot Term - Expr, EOF], [Expr \rightarrow \cdot Term, EOF],
 [Term \rightarrow \cdot Factor * Term, EOF], [Term \rightarrow \cdot Factor * Term, -],
 [Term \rightarrow \cdot Factor, EOF], [Term \rightarrow \cdot Factor, -],
 [Factor \rightarrow \cdot ident, EOF], [Factor \rightarrow \cdot ident, -], [Factor \rightarrow \cdot ident, *] \}

CC_1 : \{ [Goal \rightarrow Expr \cdot, EOF] \}

CC_2 : \{ [Expr \rightarrow Term \cdot - Expr, EOF], [Expr \rightarrow Term \cdot, EOF] \}

CC_3 : \{ [Term \rightarrow Factor \cdot * Term, EOF], [Term \rightarrow Factor \cdot * Term, -],
 [Term \rightarrow Factor \cdot, EOF], [Term \rightarrow Factor \cdot, -] \}

CC_4 : \{ [Factor \rightarrow ident \cdot, EOF], [Factor \rightarrow ident \cdot, -], [Factor \rightarrow ident \cdot, *] \}

CC_5 : \{ [Expr \rightarrow Term - \cdot Expr, EOF],
 [Expr \rightarrow \cdot Term - Expr, EOF], [Expr \rightarrow \cdot Term, EOF],
 [Term \rightarrow \cdot Factor * Term, EOF], [Term \rightarrow \cdot Factor * Term, -],
 [Term \rightarrow \cdot Factor, EOF], [Term \rightarrow \cdot Factor, -],
 [Factor \rightarrow \cdot ident, EOF], [Factor \rightarrow \cdot ident, -], [Factor \rightarrow \cdot ident, *] \}
Example

(Summary)

\[\text{cc}_6 : \{ [\text{Term} \rightarrow \text{Factor} \cdot \text{Term} \cdot \text{EOF}], [\text{Term} \rightarrow \text{Factor} \cdot \text{Term} \cdot -], [\text{Term} \rightarrow \cdot \text{Factor} \cdot \text{Term} \cdot \text{EOF}], [\text{Term} \rightarrow \cdot \text{Factor} \cdot \text{Term} \cdot -], [\text{Term} \rightarrow \cdot \text{Factor} \cdot \text{EOF}], [\text{Term} \rightarrow \cdot \text{Factor} \cdot -], [\text{Factor} \rightarrow \cdot \text{id} \cdot \text{EOF}], [\text{Factor} \rightarrow \cdot \text{id} \cdot -], [\text{Factor} \rightarrow \cdot \text{id} \cdot *] \} \]

\[\text{cc}_7 : \{ [\text{Expr} \rightarrow \text{Term} - \text{Expr} \cdot , \text{EOF}] \} \]

\[\text{cc}_8 : \{ [\text{Term} \rightarrow \text{Factor} \cdot \text{Term} \cdot , \text{EOF}], [\text{Term} \rightarrow \text{Factor} \cdot \text{Term} \cdot -] \} \]
The *goto()* Relationship *(from the construction)*

<table>
<thead>
<tr>
<th>State</th>
<th>Expr</th>
<th>Term</th>
<th>Factor</th>
<th>-</th>
<th>*</th>
<th>Ident</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Filling in the ACTION and GOTO Tables

- **The algorithm**

 for each set $cc_x \in CC$
 for each item $i \in cc_x$
 if i is $[A \rightarrow \beta \cdot a, b]$ and $goto(cc_x, a) = cc_k$, $a \in T$
 then $ACTION[x, a] \leftarrow \text{"shift } k\text{"}$
 else if i is $[S' \rightarrow S \cdot \text{EOF}]$
 then $ACTION[x, \text{EOF}] \leftarrow \text{"accept"}$
 else if i is $[A \rightarrow \beta \cdot a]$
 then $ACTION[x, a] \leftarrow \text{"reduce } A \rightarrow \beta\text{"}$
 for each $nt \in NT$
 if $goto(cc_x, nt) = cc_k$
 then $GOTO[x, nt] \leftarrow k$

- **Ignores many items where the \cdot precedes non-terminal**
 - closure() instantiates items where \cdot precedes FIRST(X)
 $[A \rightarrow \beta \cdot X \gamma, a]$ forces to have $[X \rightarrow \cdot b \delta, c]$,
 where $b \in \text{FIRST}(X)$, $c \in \text{FIRST}(\gamma a)$, $X \Rightarrow^* b \delta$
Example
(Filling in the tables)

The algorithm produces the following table

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ident</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>s 4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>acc</td>
</tr>
<tr>
<td>s 5</td>
<td>r 3</td>
</tr>
<tr>
<td>r 5</td>
<td>s 6</td>
</tr>
<tr>
<td>r 6</td>
<td>r 6</td>
</tr>
<tr>
<td>s 4</td>
<td></td>
</tr>
<tr>
<td>s 4</td>
<td></td>
</tr>
<tr>
<td>s 4</td>
<td></td>
</tr>
<tr>
<td>r 4</td>
<td>r 4</td>
</tr>
</tbody>
</table>

Plugs into the skeleton LR(1) parser
What can go wrong?

- What if set s contains $[A \rightarrow \beta \cdot a, b]$ and $[B \rightarrow \beta \cdot, a]$?
 - First item generates “shift”, second generates “reduce”
 - Both define $\text{ACTION}[s,a]$ — cannot do both actions
 - This is a fundamental ambiguity, called a $\text{shift/reduce error}$
 - Modify the grammar to eliminate it (if-then-else)
 - Shifting will often resolve it correctly

- What if set s contains $[A \rightarrow \gamma \cdot, a]$ and $[B \rightarrow \gamma \cdot, a]$?
 - Each generates “reduce”, but with a different production
 - Both define $\text{ACTION}[s,a]$ — cannot do both reductions
 - This fundamental ambiguity is called a $\text{reduce/reduce error}$
 - Modify the grammar to eliminate it ($\text{PL/I's overloading of (})$

- In either case, the grammar is not LR(1)
Shrinking the Tables

- **Combine terminals** - `number & identifier, + & -, * & /`
 - Directly removes a column, may remove a row
 - For expression grammar, 198 (vs. 384) table entries

- **Combine rows or columns**
 - Implement identical rows once & remap states
 - Requires extra indirection on each lookup of ACTION & GOTO
 - Use separate mapping for ACTION & for GOTO

- **Use another construction algorithm**
 - Both LALR and SLR produce smaller tables with LR(0) items
 - Implementations are readily available
SLR vs. LR(1) vs. LALR

- **SLR parsing**
 - States are constructed from LR(0) items
 - State transitions based on symbols(X) right after •
 - \(A \rightarrow \beta \cdot X \gamma \)

- **LR(1) parsing**
 - States are constructed from LR(1) items
 - State transitions based on symbols(X) right after •
 - \(A \rightarrow \beta \cdot X \gamma, s \)

- **LALR parsing**
 - States are constructed with LR(0) items and refine states if different actions are needed depending on look-ahead symbol
 - Or states are constructed with LR(1) items and merge states if cores are the same and the same action is needed for the merged look-ahead symbols
LR(k) vs. LL(k)

Finding Reductions

- **LR(k)** ⇒ Each reduction in the parse is detectable with
 1. the completed left context,
 2. the reducible phrase, itself, and
 3. the k terminal symbols to its right

- **LL(k)** ⇒ Parser must select the reduction based on
 1. The completed left context
 2. The next k terminals

Thus, LR(k) examines more context

"... in practice, programming languages do not actually seem to fall in the gap between LL(1) languages and deterministic languages"

Left Recursion vs. Right Recursion

- **Right recursion**
 - Required for termination in top-down parsers
 - Uses (on average) more stack space
 - Produces right-associative operators

- **Left recursion**
 - Works fine in bottom-up parsers
 - Limits required stack space
 - Produces left-associative operators

- **Rule of thumb**
 - Left recursion for bottom-up parsers
 - Right recursion for top-down parsers

![Diagram of right recursion](image)

![Diagram of left recursion](image)

```
*   *
w   *     *
   x   *
   y   z

w * (x * (y * z))
```

```
*   *
*   *
*   *
w   x   y   z

((w * x) * y) * z
```
Hierarchy of Context-Free Languages

Context-Sensitive languages

Context-free languages

RG

LR(k)

LL(k)