Compiler Design

Optimizations

Hwansoo Han
Optimization

- **Idea**
 - Transform code into better (optimized) shape
 - For time, size, power, reliability, security, maintenance
 - Eliminate redundancy in runtime execution for speed (time)

- **Scope to apply**
 - Local optimization is applied within a BB
 - Global optimization is applied in the scope larger than BB
Simple Optimizations

- **Several simple optimizations**
 - Constant folding
 - Algebraic simplifications
 - Value numbering
 - Copy propagation
 - Constant propagation

- **Commonly used as local optimizations**
 - But can be extended to global optimizations, too.

 \[
 \begin{align*}
 \text{Constant folding, Algebraic simplifications, Value numbering, Copy propagation} & \quad \text{Require no data-flow analysis} \\
 \text{Constant propagation} & \quad \text{Require DFA for global optimization}
 \end{align*}
 \]
Constant Folding

- **Compile time computation for known values**
 - Operations on constants can be computed at compile time
 - To decide if operands are constant across BB, DFA is needed
 - In general, if there is a statement $x := y \ op \ z$
 - And y and z are constants
 - Then $y \ op \ z$ can be computed at compile time

- **Examples**
 - $x = 2 + 2 \quad x = 4$
 - if $(2 < 0)$ goto L can be deleted
 - $y = 2$
 - $y = 3$
 - $x = y + 2$
Algebraic Simplification

- **Some statements can be deleted (identity operation)**

 \[
 x = x + 0, \quad x = x \times 1, \quad x = x \ll 0
 \]

 \[
 x = x \mid 0, \quad x = x \& 0xffffffff
 \]

- **Some statements can be simplified**

 \[
 x = x \times 0 \quad \Rightarrow \quad x = 0
 \]

 \[
 y = y \times 2 \quad \Rightarrow \quad y = y \times y
 \]

 \[
 x = x \times 8 \quad \Rightarrow \quad x = x \ll 3
 \]

 \[
 x = x \times 15 \quad \Rightarrow \quad t = x \ll 4; \quad x = t - x
 \]

 (on some machines \(\ll\) is faster than \(\times\))

 \[
 (x - y) + (x - y) \quad \Rightarrow \quad 2 \times x - 2 \times y
 \]

 (if \(x = 2^{31}, y = 2^{31}-1\), overflow occurs)
Copy Propagation

- **Eliminate simple assignments**
 - If \(w = x \) appears in a block,
 all subsequent uses of \(w \) can be replaced with uses of \(x \)

- **Global copy propagation**
 - Single assignment is important here.
 - In SSA, globally replace a copied variable with the other variable

- **Example:**

```
\[
\begin{align*}
b &= z + y \\
a &= b \\
x &= 2 \times a
\end{align*}
\]
```

```
\[
\begin{align*}
b &= z + y \\
a &= b \\
x &= 2 \times b
\end{align*}
\]
```
Constant Propagation

- **Eliminate simple assignment with a constant**
 - Similar to copy propagation
 - If \(w = c \) appears in a block, all subsequent uses of \(w \) can be replaced with uses of \(c \)

- **Global constant propagation**
 - Using SSA, it is the same procedure as copy propagation

```
b = 3
c = 4 * b
If (c > b) goto L1

L1: e = a + b

\[ d = b + 2 \]
```

```
b = 3
c = 4 * 3
If (c > 3) goto L1

L1: e = a + 3

\[ d = 3 + 2 \]
```
Copy/Constant Propagation

- **CP does not make the program smaller or faster, but might enable other optimizations**
 - Constant folding
 - Dead code elimination
 - Algebraic simplification

- **Example:**

```
| a = 8  | a = 8 |
| x = 2 * a | x = 16 |
| y = z * x | y = z << 4 |
| t = u    | v = z + u |
| v = z + t |
```
Value Numbering

- **Eliminate computations if the equivalent values are already computed**
 - VN(n): assign an identifying number to each expression (n)
 - VN(x+y) = VN(j) iff x+y and j have the same value for all paths

- **Algorithm**
 - For each operation x = <operator, y, z>
 - Get VN for operands y and z from hash lookup
 - Hash <operator, VN(y), VN(z)> to get a VN for x
 - If x already had a VN, replace x with a reference of the VN
 - For each simple assignment x = y or x = const
 - Const/copy propagation is achieved by assigning the same VN
Value Numbering (cont’d)

- **Example in SSA**

<table>
<thead>
<tr>
<th>Original Code</th>
<th>With VNs</th>
<th>Optimized</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_0 = x_0 + y_0)</td>
<td>(a_0^3 = x_0^1 + y_0^2)</td>
<td>(a_0^3 = x_0^1 + y_0^2)</td>
</tr>
<tr>
<td>(b_0 = x_0 + y_0)</td>
<td>(\star b_0^3 = x_0^1 + y_0^2)</td>
<td>(b_0^3 = a_0^3)</td>
</tr>
<tr>
<td>(a_1 = 17)</td>
<td>(a_1^4 = 17)</td>
<td>(a_1^4 = 17)</td>
</tr>
<tr>
<td>(c_0 = x_0 + y_0)</td>
<td>(\star c_0^3 = x_0^1 + y_0^2)</td>
<td>(c_0^3 = a_0^3)</td>
</tr>
</tbody>
</table>

- **\(\star\):** redundant computation for the same value
- **RHS computation is replaced with the first reference computation**
- **Redundant expression is eliminated!**
Extensions to Value Numbering

- **Constant folding**
 - Add a bit in the hash to indicate a value is constant
 - Evaluate constant values at compile-time
 - Replace with load immediate or immediate operand

- **Algebraic identities**
 - List up special cases
 - Compute with identities
 - Computations that result in identities
 - Replace with input VN or immediate for the identity

- \(x+0, x-0, x*1, x/1, \)
- \(x-x, x*0, x\div x, x\sqrt{0}, x\land 0xFF...FF, \)
- \(\max(x,\text{MININT}), \)
- \(\min(x,\text{MAXINT}), \max(x,x), \)
- \(\min(y,y), \) and so on ...
Handling Larger Scopes - Superlocal VN

- **Extended Basic Blocks (EBB):** single entry, multiple exits
 - Initialize table for b_i with table from b_{i-1}
 - With single-assignment naming, can use scoped hash table

The Plan:
- Process b_1, b_2, b_4
- **Pop** two levels
- Process b_3 relative to b_1
- **Start clean** with b_5
- **Start clean** with b_6
Dominator Value Numbering

- Can use hash table from \(\text{idom}(x) \) for basic block \(x \)
 - Use C for F, and A for G
 - Imposes a Dom-based application order
- Leads to **Dominator VN Technique (DVNT)**

Dominator tree

- A
 - B
 - C
 - G
- D
 - E
 - F

```
A
  B
  C
  G
D
  E
  F
```
Global Value Numbering

- **To go further, we must deal with merge points**
 - Our simple naming scheme falls apart in b_4
 - We need more powerful analysis tools
 - Naming scheme becomes SSA

- **This requires global data-flow analysis**

 "Compile-time reasoning about the run-time flow of values"

 1. Build a model of control-flow
 2. Pose questions as sets of simultaneous equations
 3. Solve the equations
 4. Use solution to transform the code

Examples: LIVE, REACHES, AVAIL
Redundancy Elimination

- **Unreachable code elimination**
- **Dead code elimination**
- **Common subexpression elimination**
- **Code motion**
 - Loop invariant code motion
 - Partial redundancy elimination
 - Code hoisting
Unreachable Code Elimination

- **Eliminating unreachable code:**
 - Code that is unreachable in the control-flow graph
 - Basic blocks that are not the target of any jump or “fall through” from a conditional branch

- **Why would such basic blocks occur?**

- **Removing unreachable code**
 - Makes the program smaller
 - And sometimes also faster
 - Due to memory cache effects (increased spatial locality)
Dead Code Elimination

- Dead code created as a result of compiler optimizations
- If \(w := rhs \) appears in a basic block and \(w \) does not appear anywhere else in the program, then \(w := rhs \) is dead and can be eliminated
 - Dead = does not contribute to the program’s result
 = not live right after definition

- Example: (\(a \) is not used anywhere else)

 \[
 \begin{align*}
 x &= z + y \\
 a &= x \\
 x &= 2 \times a
 \end{align*}
 \]

 SSA, CP

 \[
 \begin{align*}
 x_1 &= z + y \\
 a &= x_1 \\
 x_2 &= 2 \times x_1
 \end{align*}
 \]

 DCE
Common Subexpression Elimination

- **CSE**
 - Assume Basic block is in single assignment form
 - All assignments with same \textit{rhs} compute the same value

- **Example:**

\[
\begin{align*}
x &= y + z \\
&\quad \ldots \\
w &= y + z
\end{align*}
\]

\[
\begin{align*}
x &= y + z \\
&\quad \ldots \\
w &= x
\end{align*}
\]

- **Why is single assignment important here?**
Dominance in CSE

\[x = a - b \]
\[z = a - b \]

\(a = 10 \)
\(b = 5 \)

\(z = x \)?

OK, if \(b_1 \) dom \(b_2 \)

Fully Redundant

\(b_0 \)
\(b_1 \)
\(b_2 \)

\(b_0 \)
\(b_1 \)
\(b_2 \)

\(b_0 \)
\(b_1 \)
\(b_2 \)

\(z = x \)?

NO, it needs PRE

Partially Redundant
Global CSE

- Solve “available expression” problem using DFA
 - Expression must be available from all paths at a joint point
- Iterate statement within a basic block, maintaining “available expression” and replacing common expressions with a temporary variable (e.g. \(t_1 \) in the example)

\[
\begin{align*}
 x &= a - b \\
 y &= a - b \\
 z &= a - b \\
 AVAIL &= \{a - b\} \\
\end{align*}
\]

\[
\begin{align*}
 t_1 &= a - b \\
 x &= t_1 \\
 y &= t_1 \\
 AVAIL &= \{a - b\} \\
\end{align*}
\]

\[
\begin{align*}
 t_1 &= a - b \\
 z &= t_1 \\
 AVAIL &= \{a - b\} \\
\end{align*}
\]
Loop Invariant Code Motion

- **Finding loop invariant**
 - Operands are all constants
 - Operands are all defined outside the loop

- **Calculating a loop invariant expression within a loop**
 - Introduces redundant computation
 - Needs to be moved (hoisted) outside the loop

```
m = n + 2
n = 0
n = 2
OK? NO
```
Loop Invariant Code Motion (cont’d)

- **Hoist loop invariant code**
 - Expressions are always safe, but assignments are not
 - Due to conditional execution or early exit, assignments might not execute each iteration even not execute at all
 - Could raise an exception, otherwise would not be raised
 - Assignment (\(v = \text{expression} \)) can be hoisted, if the following two conditions hold
 - The assignment dominates all uses of \(v \) in the loop, and
 - The assignment dominates all the exit blocks of the loop
Partial Redundancy Elimination

- An expression is redundantly evaluated along some paths but not all paths
- Elimination (PRE)
 - Discover partial redundancies
 - Convert them to full redundancies
 - Remove them
Loop invariant code motion is actually a type of PRE

- 1st iteration: \(x + y\) is not redundant, but
- From the 2nd iteration and on: \(x + y\) is redundant.
Code Hoisting

- **If expressions are always evaluated after some point, move them to the *latest common dominator***
 - Reduce code size, but execution time may not improve depending on dynamic factors – instr. scheduling, cache, etc.

```
a < 10

e = c + d
d = 2
f = a + c
c + d > 0

g = a + c
h = a + c
exit
```

```
t1 = c + d
a < 10

e = t1
d = 2
f = t2
c + d > 0

g = t2
h = t2
exit
```
Loop Unrolling (1)

❖ **Most of exec-times are spent in loops**
 - Reduce loop overhead by unrolling the loop

```c
for (i=0; i<100; i++)
    a[i] = b[i] * c[i];
```

Complete unrolling

```c
a[0] = b[0] * c[0];
a[1] = b[1] * c[1];
...
a[99] = b[99] * c[99];
```

❖ Eliminated additions, tests, and branches
 - Only works with fixed loop bounds & few iterations
 - But increases the code size
❖ Unrolling is always safe, as long as we get the bounds right
Loop Unrolling (2)

- Unrolling by smaller factors is more practical

```c
for (i=0; i<100; i++)
    a[i] = b[i] * c[i];
```

Unrolling by 4:
```c
for (i=0; i<100; i+=4) {
    a[i]     = b[i]     * c[i];
    a[i+1]   = b[i+1]   * c[i+1];
    a[i+2]   = b[i+2]   * c[i+2];
    a[i+3]   = b[i+3]   * c[i+3];
}
```

- Achieves much of the benefits with lower code size growth
 - Reduces tests & branches by 25%
 - Less overhead per useful operation
 - Can apply local optimizations on the loop body

- But, it relied on knowledge of the loop bounds...
Loop Unrolling (3)

- **Unrolling with unknown bounds**
 - Need to generate guard loops

```
for (i=0; i<n; i++)
a[i] = b[i] * c[i];
```

```
for (i=0; i<n-3; i+=4)
  {
    a[i] = b[i] * c[i];
    a[i+1] = b[i+1] * c[i+1];
    a[i+2] = b[i+2] * c[i+2];
    a[i+3] = b[i+3] * c[i+3];
  }
for (; i<n; i++) // guard loop
  a[i] = b[i] * c[i];
```

- Achieves most of the benefits
 - Reduces tests & branches by 25%
- Guard loop takes extra code size
 - Can generalize to arbitrary upper & lower bounds, unroll factors
Applying Optimizations

- **Note that**
 - Each optimization does very little by itself
 - Typically optimizations interact
 - Performing one optimizations enables other optimizations

- **Typical optimizing compilers repeatedly perform optimizations until no improvement is possible**
 - The optimizer can also be stopped at any time to limit the compilation time
Summary

- **Optimization scope**
 - Local optimization: process within BB
 - Global optimization: process in the scope larger than BB

- **Value numbering as an example**
 - Local VN
 - Superlocal VN
 - Dominator VN
 - Global VN

- **Several other local optimization**
 - AS, CF, UCE, CSE, DCE, CP
 - All can be extended to global optimization with powerful analysis