Computer Systems

Introduction

Han, Hwansoo
❖ **Instructor**
 - Hwansoo Han
 - http://arcs.skku.edu/People/HwansooHan
 - Corporate Collaboration Center #85568

❖ **TA’s**
 - TBA
 - http://arcs.skku.edu/
 - Corporate Collaboration Center #85565
Lecture and Labs

❖ Lecture will explain high level concepts.

❖ Lab will teach you details of computer systems.
 - Complete 1 assignment within about 2 weeks
 - 3 programming assignments (project/Lab) total
 - In TA sessions, TA will explain the assignment.
Prerequisites

❖ C/C++ programming is a must!
❖ Data structure would help!

❖ What do we prepare by ourselves?
 ▪ How to use Linux commands
 ▪ How to edit source code (vi), compile (gcc/make) and run
 ▪ How to use debugger (gdb)
 ▪ Details in C library functions, network APIs, and thread APIs
Computer Systems Track

Fundamental
- Discrete math.
- Data structures
- Digital systems

Core
- Compilers & PL
- Computer organization (architecture)
- Operating systems

Interdisciplinary
- Parallel computing
- Embedded systems
- Network computing

System Programming
= Intro. to Computer System
Evaluation

❖ **Exams (60%)**
 - Midterm 30%
 - Final 30%
 - If you don’t show up, you will automatically fail this course.

❖ **Programming projects (30%)**
 - 3 separate programming assignments
 - Submitting all assignments is mandatory to earn your grade.

❖ **Participation (10%) - Extra**
 - Quiz
 - Attendance
 - 3 days of absence will not be reflected on your grade
 - 4+ days will be counted in evaluation for your grade
Programming assignments

❖ Work in a group
 ▪ Two students in a group work together.

❖ Late policy
 ▪ 10% penalty per day, up to 5 days
 ▪ 50% of the full score is the maximum, if you delay more than 5 days

❖ Cheating
 ▪ Copying, retyping, looking at, or submitting a copy from others and internet
 ▪ Describing verbally one’s code to another
 ▪ Coaching your friend to write a code line by line
What do we learn?

- **Coverage**
 - Binary representation
 - Machine-level programming
 - Computer architecture
 - Memory hierarchy
 - Virtual memory
 - Performance optimization
 - Linking

- **Programming assignments**
 - FP arithmetic (#FP lab)
 - Binary code disassemble (#bomb lab)
 - Buffer overflow attack (#attack lab)
Computer systems:

A Programmer’s Perspective

- Randal Bryant and David O’Hallaron
- http://csapp.cs.cmu.edu

Introduction to computer systems

- A bit more focus on assembly programming
- One chapter will be covered in about 2~3 weeks
- Read the textbook!
References (1)

- **C Programming**
 - *C Programming Language*, (Second Edition)
 B. Kernighan and D. Ritchie,
References (2)

- **Assembly Programming**
 - The Art of Assembly Language Programming,
 (Second Edition)
 Randy Hyde,

- **Intel Architecture Software Developer’s Manual (SDM)**
 Volume 1: Basic Architecture
 Volume 2: Instruction Set Reference
 Volume 3: System Programming Guide
Action items before the next class

- **Linux Programming Environment**
 - Virtual machine (Oracle Virtualbox)
 - Linux (Ubuntu) installation

- Review the C language introductory classes
Class web page

- http://arcs.skku.edu/
 - Courses – System Programming
 - http://arcs.skku.edu/Courses/ComputerSystems

- **Download lecture notes**
 - Lecture notes will be posted before the class

- **Project material will be distributed from icampus**

- **Discussion on class materials and programming assignments**
 - Encourage students to discuss each other within a group
 - TAs will respond to the questions