Encoding Integers

Sign Bit
- For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Sign Extension
- e.g. 32 bit integer -> 64 bit integer
 - Extend sign bit for the higher bits

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

```
short int x = 15213;    /* 2 byte long */
short int y = -15213;
```
Two’s Complement Encoding

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

Example:

\[x = 15213: \quad 00111011 \quad 01101101 \]

\[y = -15213: \quad 11000100 \quad 10010011 \]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^0)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(2^1)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(2^2)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>(2^3)</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>(2^4)</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>(2^5)</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>(2^6)</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>(2^7)</td>
<td>128</td>
<td>0</td>
</tr>
<tr>
<td>(2^8)</td>
<td>256</td>
<td>1</td>
</tr>
<tr>
<td>(2^9)</td>
<td>512</td>
<td>1</td>
</tr>
<tr>
<td>(2^{10})</td>
<td>1024</td>
<td>0</td>
</tr>
<tr>
<td>(2^{11})</td>
<td>2048</td>
<td>1</td>
</tr>
<tr>
<td>(2^{12})</td>
<td>4096</td>
<td>1</td>
</tr>
<tr>
<td>(2^{13})</td>
<td>8192</td>
<td>1</td>
</tr>
<tr>
<td>(2^{14})</td>
<td>16384</td>
<td>0</td>
</tr>
<tr>
<td>(2^{15})</td>
<td>-32768</td>
<td>0</td>
</tr>
</tbody>
</table>

Sum

\[\text{Sum} \quad 15213 \quad -15213 \]

15213: 00111011 01101101

-15213: 11000100 10010011
Encoding Integers w/ Sign

- **One’s Complement**
 - e.g., \(7_{10} = 00111_2\) \(-7_{10} = 11000_2\)
 - \(n-n = 0\) !! but non-unique zeros
 - How many positive numbers in N bits?
 - How many negative ones?

- **Two’s Complement**
 - e.g., \(7_{10} = 00111_2\) \(-7_{10} = 11001_2\)
 - \(2^{N-1}\) non-negatives (including zero)
 - \(2^{N-1}\) negatives
 - unique zero representation
 - easy for hardware
 - leading 0 : non-negative
 - leading 1 : negative
Unsigned Values

- $U_{\text{Min}} = 0$
 - 000...0
- $U_{\text{Max}} = 2^w - 1$
 - 111...1

Two’s Complement Values

- $T_{\text{Min}} = -2^{w-1}$
 - 100...0
- $T_{\text{Max}} = 2^{w-1} - 1$
 - 011...1

Other Values

- Minus 1
 - 111...1

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{Max}</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>T_{Max}</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>T_{Min}</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td>-1</td>
<td>FF FF</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>00 00</td>
</tr>
</tbody>
</table>

Decimal Hex Binary
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
</tr>
<tr>
<td>TMax</td>
<td>32767</td>
<td>7F FF</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td>-1 FF</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>00 00</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

Observations

- \(|TMin| = TMax + 1\)
 - Asymmetric range
- \(UMax = 2 \times TMax + 1\)

C Programming

- `#include <limits.h>`
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific
Unsigned & Signed Numeric Values

<table>
<thead>
<tr>
<th>x</th>
<th>B2U(x)</th>
<th>B2T(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>

- **Equivalence**
 - Same encodings for nonnegative values

- **Uniqueness**
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

- **Can Invert Mappings**
 - $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
 - $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two’s complement integer
Remark: Mappings between unsigned and two’s complement numbers: Keep bit representations and reinterpret
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

T2U

U2T
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Relation btwn. Signed & Unsigned

Two’s Complement

\[x \to T2B \to T2U \to B2U \to ux \]

Maintain Same Bit Pattern

Large negative weight

becomes

Large positive weight
Conversion Visualized

❖ 2’s Comp. → Unsigned
- Ordering Inversion
- Negative → Big Positive

2’s Complement Range

TMax

TMin

0

−1

−2

UMax

UMax − 1

TMax + 1

TMax

Unsigned Range
Constants

- By default are considered to be signed integers
- Unsigned if have “U” as suffix

 0U, 4294967259U

Casting

- Explicit casting btwn. signed & unsigned same as U2T and T2U

  ```
  int tx, ty;
  unsigned ux, uy;
  tx = (int) ux;
  uy = (unsigned) ty;
  ```

- Implicit casting also occurs via assignments and procedure calls

  ```
  tx = ux;
  uy = ty;
  ```
Expression Evaluation

- If there is a mix of unsigned and signed in single expression, **signed values implicitly cast to unsigned**
- Including comparison operations `<`, `>`, `==`, `<=`, `>=`
- Examples (W=32):

 \[
 \text{TMIN} = -2,147,483,648, \quad \text{TMAX} = 2,147,483,647
 \]

<table>
<thead>
<tr>
<th>Constant(_1)</th>
<th>Constant(_2)</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483647-1</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483647-1</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Summary: Casting Signed ↔ Unsigned

- **Signed and unsigned casting**
 - Bit pattern is maintained
 - But reinterpreted
 - Can have unexpected effects: adding or subtracting 2^w

 - Expression containing signed and unsigned int
 - `int` is cast to `unsigned` !!!
Sign Extension

❖ **Task:**
 - Given \(w \)-bit signed integer \(x \)
 - Convert it to \(w+k \)-bit integer with same value

❖ **Rule:**
 - Make \(k \) copies of sign bit:
 - \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0 \)

\(k \) copies of MSB

\(X' \)

\(X \)

\(X' \)

\(k \) copies of MSB

\(w \)

\(k \)

\(w \)
Converting from smaller to larger integer data type

C automatically performs sign extension

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>15213</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>-15213</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>
Truncating Numbers

- **Truncating a number can alter its value**
 - A form of overflow

- **Truncating an unsigned x** (w bit long) to **x’** (k bit long)
 - Truncating x to k bits is equivalent to computing $x \mod 2^k$
 - $\text{B2U}_k ([x_{k-1}, x_{k-2}, \ldots, x_0]) = \text{B2U}_w ([x_{w-1}, x_{w-2}, \ldots, x_0]) \mod 2^k$

- **Truncating a signed x** (w bit long) to **x’** (k bit long)
 - $\text{B2T}_k ([x_{k-1}, x_{k-2}, \ldots, x_0]) = \text{B2T}_w ([x_{w-1}, x_{w-2}, \ldots, x_0]) \mod 2^k$
 - $= \text{U2T}_k (\text{B2U}_w ([x_{w-1}, x_{w-2}, \ldots, x_0]) \mod 2^k)$

```c
int x = 50323; // 0x0000C493
short int sx = (short) x; // -15213 = -(2^{16} - 50323)
int y = sx; // -15213
```
Summary - Expanding, Truncating

- **Expanding (e.g., short int to int)**
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result

- **Truncating (e.g., unsigned to unsigned short)**
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior
Two’s Complement Addition

Operands: w bits

True Sum: $w+1$ bits

Discard Carry: w bits

TAdd and UAdd have Identical Bit-Level Behavior

- Signed vs. unsigned addition in C:

```c
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

- Will give $s == t$
Functionality

- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2’s complement integer

True Sum

<table>
<thead>
<tr>
<th>True Sum</th>
<th>TAdd Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^w-1</td>
<td>011...1</td>
</tr>
<tr>
<td>0</td>
<td>000...0</td>
</tr>
<tr>
<td>-2^w-1</td>
<td>100...0</td>
</tr>
<tr>
<td>-2^w</td>
<td>1000...0</td>
</tr>
</tbody>
</table>

Diagram:
- PosOver: $011...1$
- NegOver: $100...0$
Values
- 4-bit two’s comp.
- Range from -8 to +7

Wraps Around
- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once
Goal: Computing Product of w-bit numbers x, y

- Either signed or unsigned

But, exact results can be bigger than w bits

- Unsigned: up to 2^w bits
 - Result range: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
- Two’s complement min (negative): Up to 2^w-1 bits
 - Result range: $x \times y \geq (-2^{w-1}) \times (2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
- Two’s complement max (positive): Up to 2^w bits, but only for $(TMin_w)^2$
 - Result range: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$

So, maintaining exact results...

- would need to keep expanding word size with each product computed
- done in software, if needed
 - e.g., by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: w bits

True Product: 2^w bits

Discard w bits: w bits

- **Standard Multiplication Function**
 - Ignores high order w bits

- **Implements Modular Arithmetic**

 $\text{UMult}_w(u, v) = u \cdot v \mod 2^w$
Signed Multiplication in C

Operands: \(w \) bits

\[\begin{array}{c}
\text{True Product: } 2^*w \text{ bits } \\
\bullet \bullet \bullet \\
\text{Discard } w \text{ bits: } w \text{ bits }
\end{array} \]

\[TMult_w(u, v) \]

\[u \star v \]

\[u \bullet v \]

\[u \cdot v \]

\[\text{True Product: } 2^*w \text{ bits } \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]

\[TMult_w(u, v) \]

\[\text{Discard } w \text{ bits: } w \text{ bits } \]

\[u \]

\[v \]

\[u \cdot v \]
Operation

- $u \ll k$ gives $u \times 2^k$
- Both signed and unsigned

Operands: w bits

True Product: $w+k$ bits

Discard k bits: w bits

Examples

- $u \ll 3 \quad == \quad u \times 8$
- $(u \ll 5) - (u \ll 3) \quad == \quad u \times 24$
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2
- \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
- Uses logical shift

Operands:

<table>
<thead>
<tr>
<th>Division:</th>
<th>(u \gg k)</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(x \gg 1)</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>(x \gg 4)</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>(x \gg 8)</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Signed Power-of-2 Mult./Div.

❖ Two’s complement multiplication by a power of 2
 - int \(s \), unsigned \(k \) (\(0 \leq k < w \))
 - \(s \ll k \) (in C program) yields \(s \cdot 2^k \)

❖ Two’s complement division by a power of 2
 - int \(s \), unsigned \(k \) (\(0 \leq k < w \))
 - \(s / 2^k \) in C computes quotient using \textbf{round toward zero}
 - rounding down (for \(s \geq 0 \))
 - \(s \gg k \) yields \(\lfloor s / 2^k \rfloor \)
 - rounding up (for \(s < 0 \))
 - \((s + \text{bias}) \gg k \) yields \(\lceil s / 2^k \rceil \)
 - \(\text{bias} = 2^k - 1 = (1 \ll k) - 1 \)

❖ (NOTE) \(\gg \) should be an arithmetic shift-right
Division

❖ Terms

- \(\frac{A}{B} = Q, \ A \mod B = R \)
- \(A = B \times Q + R \)
- **A**: dividend, **B**: divisor, **Q**: quotient, **R**: remainder

❖ Sign relations

- **R** is either zero or the same signed number as **A**
- **B \times Q** is either zero or the same signed number as **A**
- E.g., **A/3, A/-3**

<table>
<thead>
<tr>
<th>A</th>
<th>-8</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/3</td>
<td>Q</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>-8</td>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>A/-3</td>
<td>Q</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Summary – Add, Multiply, Divide

❖ **Add, Multiply**
 - Signed and unsigned computations are the same at bit level behavior

❖ **Power-of-2 Multiply**
 - Unsigned: \(u << k = u \times 2^k \)
 - Signed: \(s << k = s \times 2^k \)
 - same bit level behavior

❖ **Power-of-2 divide**
 - Unsigned: \(u >> k = \lfloor u / 2^k \rfloor \) (logical shift)
 - Signed: \(s >> k = \lfloor s / 2^k \rfloor \) (s ≥ 0, arithmetic shift)
 \((s + \text{bias}) >> k = \lceil s / 2^k \rceil \) (s < 0, arithmetic shift)
 \(\text{bias} = 2^k - 1 = (1 << k) - 1 \)