Sets (I)

Hwansoo Han
Definitions

Set

- A collection of members (or elements)
- Each member
 - A set itself
 - Primitive element (an *atom*)

- All members of a set are different
- All elements of a set are usually of the same type
- Elements are often linearly ordered
Terminology

- **Set representation**
 - Curly brackets – e.g. \{ 1, 4 \}
 - *Set former* – \{ x | statement about x \}
 - e.g. \{ x | x is a positive integer and x ≤ 100 \}
 - Empty set (or Null set) – \Ø

- **Difference between list**
 - Set can be implemented with list, but the order of elements is irrelevant
 - e.g. \{ 1, 4 \} = \{ 4, 1 \}
 - Set cannot have the same element twice, but list can
 - e.g. \{ 1, 4, 1 \} is not a set
Terminology

- **Relationships**
 - **Membership** – e.g. $x \in A, \ y \notin A$
 - **Subset** – \subseteq, \supseteq
 - Set A is included (or contained) in set B, $A \subseteq B$ or $B \supseteq A$
 - Set A is a *proper subset* or *proper superset* of set B; $A \neq B$, and $A \subseteq B$, or $A \supseteq B$, respectively
 - **Equality** – e.g. $A = B$
 - Sets A and B consist of the same elements

- **Basic operations**
 - **Union** – e.g. $A \cup B$
 - **Intersection** – e.g. $A \cap B$
 - **Difference** – e.g. $A - B$
Abstract Data Type

- UNION (A, B, C) – assign $A \cup B$ to C
- INTERSECTION (A, B, C) – assign $A \cap B$ to C
- DIFFERENCE (A, B, C) – assign $A - B$ to C
- MERGE (A, B, C) – disjoint set union, only when $A \cap B = \emptyset$
- MEMBER (x, A) – True if $x \in A$
- MAKENULL (A) – make set A to be a null set
- INSERT (x, A) – make A to be $A \cup \{ x \}$
- DELETE (x, A) – make A to be $A - \{ x \}$
- ASSIGN (A, B) – make A to be equal to B
- MIN (A), MAX (A) – elements in A should be linearly ordered
- EQUAL (A, B) – true if $A = B$
- FIND (x) – name of the unique set of which x is a member
Bit-Vector Implementation of Sets

- Set by a bit vector
 - i_{th} bit is true, if i is an element of the set
 - A small universal set, whose elements are integers 1, ..., N for some fixed N

- Fast operations
 - MEMBER, INSERT, DELETE in constant time
 - UNION, INTERSECTION, DIFFERENCE in time proportional to the size of the universal set
 - If the universal set fits in one computer word, a single logical operation performs the set function
Bit-Vector Implementation of Sets

const
\[N = \{ \text{whatever value is appropriate} \}; \]
type
\[\text{SET} = \text{packed array}[1..N] \text{ of boolean}; \]

procedure UNION (\(A, B: \text{SET}; \text{var} \ C: \text{SET} \));
var
\[i: \text{integer}; \]
begin
\[\text{for } i := 1 \text{ to } N \text{ do} \]
\[C[i] := A[i] \text{ or } B[i] \]
end

INTERSECTION : and
DIFFERENCE : and not
Linked-List Implementation of Sets

- Items in the list are the elements of the set
 - Use space proportional to the size of the set
 - Bit-vector: proportional to the size of the universal set

- Sorted list
 - \(e_1 < e_2 < e_3 < \ldots < e_n \)
 - INTERSECTION, UNION, DIFFERENCE can be done without searching the entire list
 - Unsorted list takes \(O(n^2) \) steps
Linked-List Implementation of Sets

type
 celltype = record
 element: elementtype;
 next: \uparrow celltype
 end

header
\rightarrow e_1 \rightarrow e_2 \rightarrow \cdots \rightarrow e_n

list
Linked-List Implementation of Sets

- INTERSECTION (A, B, C) // A \cap B = C

 // core algorithm
 while (ap != NULL && bp != NULL) {
 a = ap->element; b = bp->element;
 if (a == b) {
 INSERT(a, C);
 ap = ap->next; bp = bp->next;
 } else {
 if (a < b)
 ap = ap->next;
 else bp = bp->next;
 }
 }
Linked-List Implementation of Sets

- UNION (A, B, C) // A ∪ B = C

 // core algorithm
 while (ap != NULL && bp != NULL) {
 a = ap->element; b = bp->element;
 if (a == b) {
 INSERT(a, C);
 ap = ap->next; bp = bp->next;
 } else {
 if (a < b) {
 INSERT(a, C); ap = ap->next;
 } else {
 INSERT(b, C); bp = bp->next; }
 }
 }

 INSERT_THE_REST (ap, bp, C);
DIFFERENCE (A, B, C) // A – B = C

// core algorithm
while (ap != NULL && bp != NULL) {
 a = ap->element; b = bp->element;
 if (a == b) {
 ap = ap->next; bp = bp->next;
 } else {
 if (a < b) {
 INSERT(a, C); ap = ap->next; }
 else
 bp = bp->next;
 }
}
INSERT_THE_REST (ap, C);
Dictionary

- For an algorithm, we only need simple operations
 - No need of powerful operations, such as union or intersection
 - Keep a set of current objects, with periodic insert, delete, and checking membership

- ADT *dictionary*
 - INSERT
 - DELETE
 - MEMBER
 - MAKENULL
Implementation of Dictionary

- Sorted or unsorted list
- Bit-vector
- Fixed-length array (with last pointer)