Sets (II)

Hwansoo Han
Hashing

- List, array for directory
 - INSERT, DELETE, MEMBER require $O(N)$ for N elements

- Hashing is widely used for directory
 - Operations require constant time on the average
 - In the worst case, could take $O(N)$
Open vs. Closed Hashing

- Open (or external) hashing
 - Use potentially unlimited space
 - No limit on the size of set

- Closed (or internal) hashing
 - Use a fixed space
 - Limit on the size of set
Open Hashing

- Main idea
 - Partition (possibly infinite) elements into a finite number of classes – e.g. B classes numbered 0, 1, ..., $B-1$

- Hash function, $h(x)$
 - x is called key
 - The value of $h(x)$ is called hash value
 - If $h(x) = i$, x belongs to i_{th} class

- Maintain B buckets – 0, 1, ..., $B-1$
 - Hash value is one of the bucket numbers
 - An array, bucket table keeps the headers for B lists
Open Hashing – data organization

The diagram illustrates the data organization in open hashing. Each bucket contains a list of elements, and the buckets are indexed from 0 to B-1. The diagram shows how elements are distributed across the buckets.
Open Hashing – data organization

- If buckets are roughly equal in size
 - The list for each bucket will be short
 - Average bucket will have N/B members

- If we can estimate N, choose B to be as large
 - Each bucket will have one or two members
 - Operations will take, on average, small constant time

- Hash function h should distribute fairly evenly among the buckets – i.e. random value independent of x
Open Hashing – example $h(x)$

- Hash function for string
 - Add the encoding of each character – $\text{ord}(c)$

```plaintext
function h ( x: nametype ) : 0..B – 1 ;
    var
        i, sum: integer
    begin
        sum: = 0;
        for i: 1 to 10 do
            sum: = sum + ord(x[i]);
        h : = sum  mod  B
    end { h }
```
Open Hashing - operations

- **MEMBER** \((x, A)\) – \(x\): element, \(A\): bucket table
 - Search the bucket list headed by \(A[h(x)]\)

- **INSERT** \((x, A)\)
 - If not MEMBER \((x, A)\), insert \(x\) to the bucket list headed by \(A[h(x)]\)

- **DELETE** \((x, A)\)
 - Search the bucket list headed by \(A[h(x)]\)
 - If found, delete \(x\) from the list
Closed Hashing

- Keep the elements in the bucket table itself
 - No use of separate lists as in open hashing

- Only one element can be placed in any bucket
 - What if two elements, \(x \) and \(y \), are needed to be placed in the same bucket – i.e. \(h(x) = h(y) \)
 - Use rehash strategy
 - Find an alternative place for one element, if they have conflicting hash values by using a sequence of rehash functions, \(h_1(x), h_2(x), ... \) in order
Closed Hashing - example

- Suppose $B = 8$ and hash values for keys, a, b, c, d
 - $h(a) = 3$, $h(b) = 0$, $h(c) = 4$, $h(d) = 3$

- Rehash strategy
 - Linear hashing
 - $h_i(x) = (h(x) + i) \mod B$
Closed Hashing - operations

- **MEMBER** \((x, A)\) – \(x\): element, \(A\): bucket table
 - Examine \(h(x), h_1(x), h_2(x), \ldots\) until an empty bucket found
 - If found before an empty bucket, \(x\) belongs to \(A\)
 - If found empty bucket, \(x\) does not belong to \(A\)

- If deletions are performed, empty bucket does not guarantee \(x\) is not in somewhere else
 - When delete, insert a constant called `deleted` into a bucket
 - Need to distinguish between `deleted` and `empty`
 - `Deleted` can be treated as available space when inserting
Priority Queues

- An ADT based on set with operations
 - INSERT
 -DELETEMIN
 -MAKENULL

- Priority among elements
 - $p(a)$ for each element a, produces a real number, more generally a member of some linearly ordered set
 - DELETEMIN returns some element of smallest priority
Priority Queue Implementation

- Can use implementations for set
 - Linked list (sorted or unsorted)
 - Sorted list makes easy to find minimum priority element
 - Unsorted list makes easy to insert
 - One of INSERT and DELETEMIN will take $O(N)$
 - Bit-vector
 - Sequential search of bit vectors to find minimum

- But hash table cannot be used
 - No convenient way to find minimum
Priority Queue Implementation

- Partially ordered trees for priority queues
 - INSERT and DELETEMIN in $O(\log n)$ steps

- Main idea of partially ordered trees
 - Organize elements of the priority queue in a binary tree
 - Make the binary tree as balanced as possible
 - Make the priority of node v in no greater than the priorities of v’s children
Partially Ordered Tree - example

- Leaves at the lowest level are filled from the left
Partially Ordered Tree Operations

- **DELETEMIN**
 - Root has the element with minimum priority
 - Thus, remove the root and take the rightmost element at the lowest level and temporarily put it at the root
 - Push down this element as far down as it will go, by exchanging it with the one of its children having the smaller priority – *percolation* step
 - The element goes down either to a leaf or to a node where its priority is no larger than either of its children
Partially Ordered Trees - DELETEMIN

- DELETEMIN (P)
Partially Ordered Trees - DELETEMIN
Partially Ordered Trees - INSERT

- **INSERT**
 - Place the element to insert as far left as possible at the lowest level – if the current level is all filled, start a new level.
 - If the new element has priority lower than its parent, exchange it with its parent.
 - Repeat the exchange, until it reaches either at the root or at the position where its priority is larger than its parent.
Partially Ordered Trees - INSERT

- INSERT (4, P)

```
3
  
5
  
6 8
  
10 18 9
```

```
3
  
5
  
6 8
  
10 18 9 4
```
Partially Ordered Trees - INSERT
Partially Ordered Trees - Array Implementation

- Heap
 - Array representation for binary trees, balanced as much as possible, and have leaves at the lowest level pushed to the left
 - For \(n \) nodes, use the first \(n \) elements of array \(A[1..N] \)
 - \(A[1] \) holds the root
 - For a node \(A[i] \), left child, if exists, is at \(A[2i] \) and right child, if exists, is at \(A[2i+1] \)
 - For a node \(A[i] \), its parent is at \(A[i \div 2] \) \((i > 1) \)
Partially Ordered Trees in Heap

$$A[1..n] = 3, 5, 9, 6, 8, 9, 10, 10, 18, 9$$